Through Hole Package

Size: 2 x 1 x 0.47in (50.80 x 25.4 x 11.80mm)

Chassis Mount

Size: 2.99 x 1.24 x 0.84in (76 x 31.5 x 21.2mm)

DIN Rail Mount

Size: 2.99 x 1.24 x 1.02in (76 x 31.5 x 25.8mm)

Through Hole with Heatsink Package

Size: 2 x 1 x 0.64in (50.80 x 25.4 x 16.3mm)

Chassis Mount with Heatsink

Size: 2.99 x 1.24 x 0.99in (76 x 31.5 x 25.1mm)

DIN Rail Mount with Heatsink

Size: 2.99 x 1.24 x 1.17in (76 x 31.5 x 29.7mm)

OPTIONS

- Package Type
- -Through Hole
- -Chassis Mount
- -DIN Rail
- Heatsink

FEATURES

- Ultra Wide 4:1 Input Voltage Range
- Isolated & Regulated Single & Dual Output
- High Efficiency
- Through Hole, Chassis Mount, or DIN Rail Package
- Optional Heatsink Available
- Isolation Voltage of 1500VDC
- Six-Sided Shielded Metal Packaging

- RoHS Compliant
- Input Under Voltage Protection
- Over Voltage, Over Current, and Short Circuit Protection
- Reverse Voltage Protection Available for Chassis Mount and DIN Rail Models
- Meets CISPR22/EN55022 Class A Without External Components
- IEC60950, UL60950, and EN60950 Safety Approvals

APPLICATIONS

Industrial Robotics

DESCRIPTION

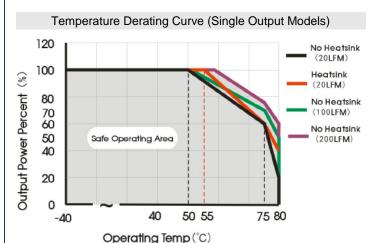
The RBA30 series of DC/DC converters offers up to 30 watts of output power in either a through hole package, chassis mounted package, or DIN rail mounted package. This series consists of single and dual output models with an ultra-wide 4:1 input voltage range. Features of this series include high efficiency, six-sided shielding, optional heatsink, and input under voltage protection as well as over voltage, over current, and short circuit protection. This series meets CISPR22/EN55022 Class A without external components, is RoHS compliant, and has IEC60950, UL60905, and EN60950 safety approvals. Please contact factory for ordering information.

	MODEL SELECTION TABLE									
			Sin	gle Output	Mode	ls				
Model Number ⁽¹⁾	Input Voltage Range ⁽²⁾	Output Voltage	Output Current		Efficiency ⁽³⁾		Maximum	Ripple &	Output	Certification
Woder Number	input voltage Range	Output voltage	Min Load	Max Load	Min.	Тур.	Capacitive Load ⁽⁴⁾	Noise	Power	Certification
RBA30-24S03		3.3VDC	0mA	6000mA	83%	85%	10000μF			
RBA30-24S05		5VDC	0mA	6000mA	86%	88%	10000µF			
RBA30-24S09	24VDC (9~36VDC)	9VDC	0mA	3333mA	86%	88%	4700µF	E0 m) /n n	30W	UL/CE/CB
RBA30-24S12		12VDC	0mA	2500mA	88%	90%	2700µF	50mVp-p	3000	UL/CE/CB
RBA30-24S15		15VDC	0mA	2000mA	88%	90%	1680µF			
RBA30-24S24		24VDC	0mA	1250mA	88%	90%	680µF			
RBA30-48S03		3.3VDC	0mA	6000mA	84%	86%	10000μF			
RBA30-48S05	40\/DC	5VDC	0mA	6000mA	86%	88%	10000µF			
RBA30-48S12	48VDC (18~75VDC)	12VDC	0mA	2500mA	86%	88%	2700µF	50mVp-p	30W	UL/CE/CB
RBA30-48S15		15VDC	0mA	2500mA	87%	89%	1680µF			
RBA30-48S24		24VDC	0mA	1250mA	87%	89%	680µF			

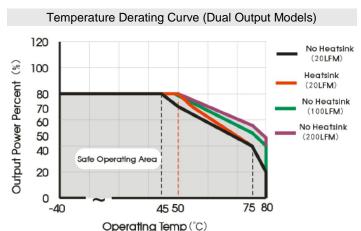
	MODEL SELECTION TABLE									
			Du	al Output	Model	S				
Model Number ⁽¹⁾	Input Voltage Range(2)	Output Voltage	Output	Current	Efficie	ency ⁽³⁾	Maximum	Ripple &	Output	Certification
Woder Number	Input Voltage Range	Output Voltage	Min Load	Max Load	Min.	Тур.	Capacitive Load ⁽⁴⁾	Noise	Power	Certification
RBA30-24D05		±5VDC	0mA	±3000mA	84%	86%	2000µF			
RBA30-24D12	24VDC	±12VDC	0mA	±1250mA	87%	89%	1250µF	50mVp-p	30W	CE
RBA30-24D15	(9~36VDC)	±15VDC	0mA	±1000mA	87%	89%	680µF	Зоптур-р	3000	CL
RBA30-24D24		±24VDC	0mA	±625mA	87%	89%	470µF			
RBA30-48D05	48VDC	±5VDC	0mA	±3000mA	84%	86%	2000µF			
RBA30-48D12	(18~75VDC)	±12VDC	0mA	±1250mA	86%	88%	1250µF	50mVp-p	30W	CE
RBA30-48D15	(10~75VDC)	±15VDC	0mA	±1000mA	86%	88%	680µF			

SPECIFICATIONS						
		, Nominal Input Voltage, and Rated Ou		less otherwi	se noted.	
SPECIFICATION		specifications based on technological		T. 00	Max	l loit
INPUT SPECIFICATIONS	lESI (CONDITIONS	Min	Тур	Max	Unit
INPUT SPECIFICATIONS	24VDC Nominal Input		9	24	36	
Input Voltage Range	48VDC Nominal Input		18	48	75	VDC
	24VDC Nominal Input		10	40	40	
Absolute Maximum Input ⁽⁵⁾	48VDC Nomianl Input				80	VDC
	40 V DO I VOITII ATII TII PUL	3.3VDC Output Models		970	993	
	24VDC Nominal Input	5VDC Output Models		1420	1453	
	24VBO Nominai inpat	Other Models		1388	1488	
Full Load Input Current		3.3VDC Output Models		474	485	mA
	48VDC Nominal Input	5VDC Output Models		710	726	
	40 V DO TYOMING INPUT	Other Models		702	744	
		3.3VDC Output Models		60	100	
	24VDC Nominal Input	5VDC Output Models		60	100	
	21786 Homman input	Other Models		6	12	
No Load Input Current		3.3VDC Output Models		20	30	mA
	48VDC Nominal Input	5VDC		20	35	
	40 V DO TYOMING INPUT	Other Models		5	10	
Reflected Ripple Current	Nominal Input Voltage	Caron Medele		40		mA
	24VDC Nominal Input		-0.7	10	50	
Input Surge Voltage (1sec. max.)	48VDC Nominal Input	-0.7		100	VDC	
	24VDC Nominal Input	0.7		9	VDC	
Starting Voltage	48VDC Nominal Input			18		
	24VDC Nominal Input		5.5	6.5	10	
Shutdown Voltage	48VDC Nominal Input		12.0	15.5		VDC
Input Filter	40 V DO I TOITIITAI TIIPAT		12.0	Pi Fi	lter	
mp de l'inter	Module Switch On, Ctrl susper	nded or connected to TTL high level	3.5		12	VDC
Ctrl ⁽⁶⁾	Module Switch Off, Ctrl pin con	0		1.2	VDC	
	Input Current when Switched	-	5	8	mA	
OUTPUT SPECIFICATIONS	, ,					
Output Voltage				See T	able	
	5%-100% Load			±1	±3	0/
Voltage Accuracy	0%-5% Load			±1	±5	%
Line Deculation	Full Load, input voltage from	Positive Output		±0.2	±0.5.	%
Line Regulation	low voltage to high voltage	Negative Output		±0.5	±1	70
Load Regulation ⁽⁷⁾	5%-100% Load	Positive Output		±0.5	±1	%
Load Regulation		Negative Output		±0.5	±1.5	/0
Cross Regulation	Dual Output, Main Output 50%				±5	%
	Supplement output from 10%	to 100% load			±3	
Trim				±10		%Vo
Output Power				See T		
Output Current				See T		
Maximum Capacitive Load				See T		
Ripple & Noise (20MHz bandwidth) ⁽⁸⁾	Nominal Input Voltage, 100%	Single Outputs		50	100	mVp-p
	Load	Dual Outputs		50	150	
Transient Recovery Time	25% load step change, nomina			300	500	μs
Transient Response Deviation	25% load step change,	3.3VDC, 5VDC, & ±5VDC Outputs		±5	±8	%
·	nominal input voltage	Others	±3		±5	70
Starting Time	Nominal Input Voltage & Cons	tant Resistance Load		10		ms
Temperature Coefficient	Full Load				±0.03	%/°C

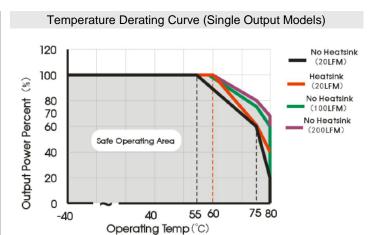
SPECIFICATIONS All specifications are based on 25°C, humidity <75%RH, Nominal Input Voltage, and Rated Output Load unless otherwise noted. We reserve the right to change specifications based on technological advances TEST CONDITIONS **SPECIFICATION** Min Unit Typ Max **PROTECTION** Hiccup, Continuous, Self-Recovery Short Circuit Protection Input Voltage Range Over Current Protection Input Voltage Range 190 Over Voltage Protection 110 Input Voltage Range 160 %Vo **ENVIRONMENTAL SPECIFICATIONS** ٥С Operating Temperature -40 +80 -55 Storage Temperature +125 ٥С Storage Humidity Non-Condensina 5 95 %RH +300 Pin Welding Resistance Temperature ٥С Welding spot is 1.5mm away from the casing, 10 seconds Vibration 10-55Hz, 10G, 30 Min. along X, Y, and Z MTBF (MIL-HDBK-217F) kHours 25°C, Full Load (Ground, Benign, Controlled Environment 1000 GENERAL SPECIFICATIONS See Table Efficiency @Full Load Switching Frequency⁽⁹⁾ PWM mode 300 KHz Insulation Voltage Input-Output, with test time of 1 minute & leak current <1mA 1500 VDC Input-Output, Insulation voltage 500VDC/60sec., Ta=25°C, Insulation Resistance 1000 МΩ humidity=75%RH **Isolation Capacitance** Input-Output, 100KHz/0.1V 2000 pF PHYSICAL SPECIFICATIONS Through Hole Package 0.92oz (26g) Without Heatsink Chassis Mount 1.69oz (48g) **DIN Rail Mount** 2.40oz (68g) Weight Through Hole Package 1.20oz (34g) Chassis Mount With Heatsink 1.98oz (56g) **DIN Rail Mount** 2.68oz (76g) 2in x 1in x 0.47in Through Hole Package (50.80mm x 25.4mm x 11.80mm) 2.99in x 1.24in x 0.84in Without Heatsink Chassis Mount (76mm x 31.5mm x 21.2mm) 2.99in x 1.24in x 1.02in **DIN Rail Mount** (76mm x 31.5mm x 25.8mm) Dimensions (L x W x H) 2in x 1in x 0.64in Through Hole Package (50.80mm x 25.4mm x 16.3mm) 2.99in x 1.24in x 0.99in With Heatsink Chassis Mount (76mm x 31.5mm x 25.1mm) 2.99in x 1.24in x 1.17in **DIN Rail Mount** (76mm x 31.5mm x 29.7mm) Cooling Method Free Air Convection Shielding Six-Sided SAFETY CHARACTERISTICS Safety Approvals IEC60950, UL60950, & EN60950 Single Output Class A (Bare Component)/Class B(10) CISPR22/EN55022 CF Class A (Bare Component)/Class B(10) **Dual Output** CISPR22/EN55022 **FMI** Class A (Bare Component)/Class B(10) Single Output CISPR22/EN55022 RΕ Class A (Bare Component)/Class B(10) **Dual Output** CISPR22/EN55022 ESD IEC/EN61000-4-2 Contact ±4kV Perf. Criteria B RS IEC/EN61000-4-3 10V/m Perf. Criteria A Perf. Criteria B ±2kV⁽¹⁰⁾ Single Output EFT IEC/EN61000-4-4 ±2kV⁽¹⁰⁾ **Dual Output** Perf. Criteria B **EMS** Line to Line ±2kV⁽¹⁰⁾ Single Output Perf. Criteria B Surge IEC/EN61000-4-5 Line to Line ±2kV⁽¹⁰⁾ **Dual Output** Perf. Criteria B Single Output 3Vr.m.s Perf. Criteria A CS IEC/EN61000-4-6 Dual Output 10Vr.m.s Perf. Criteria A



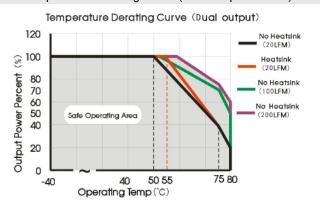
NOTES


- 1. Chassis Mount, DIN Rail Mount, and Heatsink are available options for this series. To indicate chassis mount, add "C" to model number. To indicate DIN Rail Mount, add "DN" to model number. To indicate Heatsink, add "H" to model number.
- 2. Due to input reverse polarity protection function, chassis mount & DIN rail mount models minimum value input voltage range and starting voltage is higher than 1VDC DIP package.
- 3. Efficiency is measured in nominal input voltage and rated output load. Due to input reverse polarity protection, minimum efficiency of chassis mount and DIN rail mount models greater than min. -2 is qualified.
- 4. The capacitive loads of positive and negative outputs are identical. Maximum capacitive load offered were tested at input voltage range and full load.
- 5. This is the absolute maximum rating the converter can operate at without damage, but it isn't recommended.
- 6. The voltage of Ctrl pin is relative to input pin GND.
- 7. When testing from 0%-100% load working conditions, load regulation index of ±5%.
- 8. Ripple & Noise are measured by "parallel cable" method. See application notes for specific operation.
- 9. This series of products using reduced frequency technology, the switching frequency is test value of full load. When the load is reduced to below 50%, the switching frequency decreases with decreasing load.
- 10. See EMC solution-recommended circuit for recommended circuit.
- Customization is available.

*Due to advances in technology, specifications subject to change without notice.

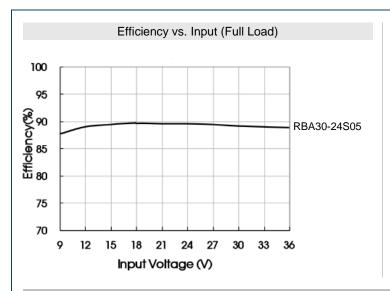

DERATING CURVES -

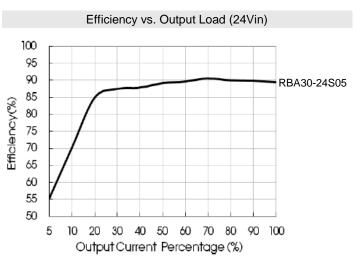
Models: RBA30-24S03(H), RBA30-24S05(H), RBA48S03(H), RBA30-48S05(H)

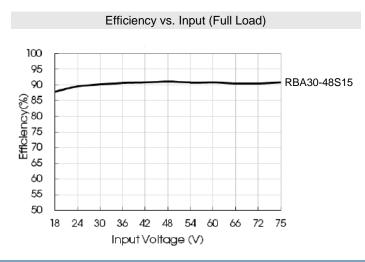


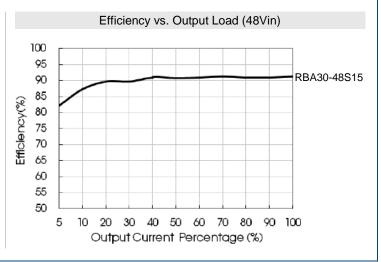
Models: RBA30-24D05(H) (9~18VDC Input), RBA30-24D24(H) (9~18VDC Input), RBA30-48D05(H) (18~36VDC Input)

Models: RBA30-24S09(H), RBA30-24S12(H), RBA30-24S15(H), RBA30-48S12(H), RBA30-48S12(H), RBA30-48S15(H), RBA30-48S24(H)

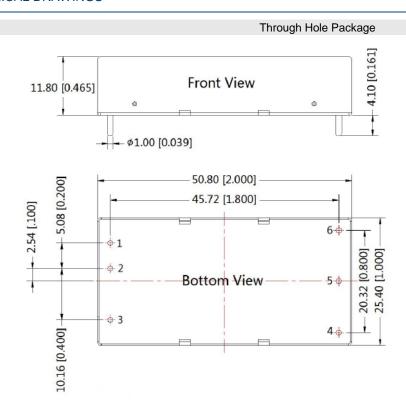

Temperature Derating Curve (Dual Output Models)

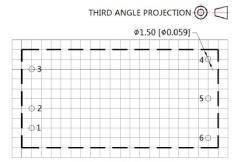



Models: RBA30-24D05(H) (18~36VDC Input Voltage), RBA30-24D24(H) (18~36VDC Input Voltage), RBA30-48D05 (36~75VDC Input Voltage), RBA30-24D12(H), RBA30-24D15(H), RBA30-48D12(H), RBA30-48D15(H)



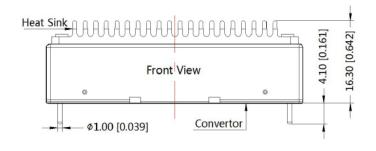
EFFICIENCY GRAPHS

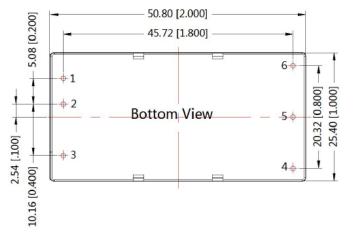




MECHANICAL DRAWINGS

Note: Grid 2.54*2.54mm Pin Out


Pin	Single	Dual
1	Vin	Vin
2	GND	GND
3	Ctrl	Ctrl
4	Trim	-Vo
5	0V	0V
6	+Vo	+Vo


Note:

Unit: mm[inch]

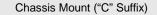
Pin diameter tolerances: ±0.10 [±0.004] General tolerances: ±0.50[±0.020]

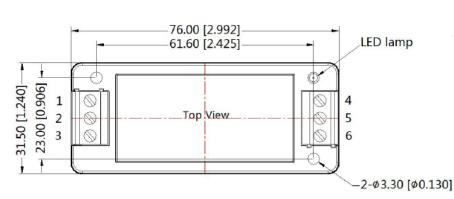
Through Hole Package with Heatsink ("H" Suffix)

Pin Out

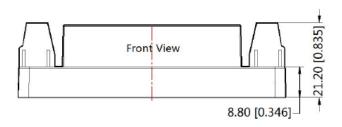
Single	Dual
Vin	Vin
GND	GND
Ctrl	Ctrl
Trim	-Vo
VO	0V
+Vo	+Vo
	Vin GND Ctrl Trim 0V

Note:


Unit: mm[inch]


General tolerances: ±0.50[±0.020]

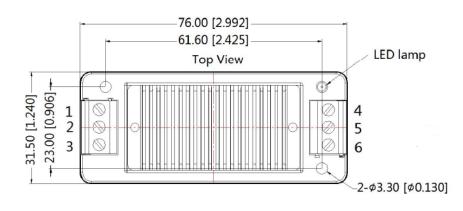
If heatsinks are being used, make sure there is enough space for a special size in above graph


THIRD ANGLE PROJECTION (6)

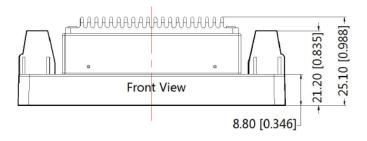
Pin Out						
Pin	Single	Dual				
1	Ctrl	Ctrl				
2	GND	GND				
3	Vin	Vin				
4	Trim	-Vo				
5	ΟV	ΟV				

Note:

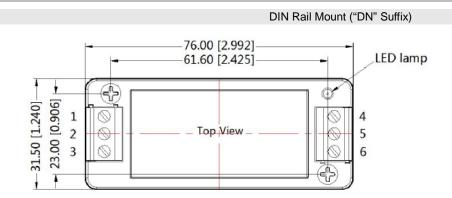
Unit: mm[inch]


Wire range: 24-12AWG

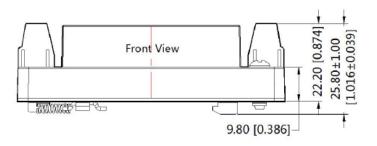
Tightening torque: Max 0.4 N·m General tolerances: ±0.50[


Chassis Mount with Heatsink ("CH" Suffix)

THIRD ANGLE PROJECTION 🔘 🔾



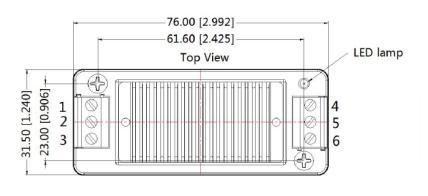
Pin Out					
Pin	Single	Dual			
1	Ctrl	Ctrl			
2	GND	GND			
3	Vin	Vin			
4	Trim	-Vo			
5	0V	0V			
6	+Vo	+Vo			


Note: Unit: mm[inch] Wire range: 24-12AWG Tightening Torque: Max 0.4N·m General tolerances: ±0.50 [±0.020]

THIRD ANGLE PROJECTION (6)

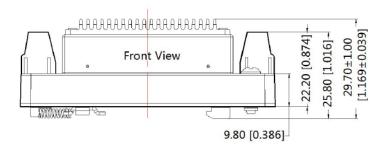
Pin-Out					
Pin	Single	Dual			
1	Ctrl	Ctrl			
2	GND	GND			
3	Vin	Vin			
4	Trim	-V0			
5	0V	0V			
6	+\/o	+\/o			

Note:


Unit: mm[inch Wire range: 24-12AWG

Tightening torque: Max 0.4N⋅m General tolerances: ±0.50[±0.020]

DIN Rail Mount with Heatsink ("DNH" Suffix)



Pin Out					
Pin	Single	Dual			
1	Ctrl	Ctrl			
2	GND	GND			
3	Vin	Vin			
4	Trim	-Vo			
5	0V	0V			
6	+Vo	+Vo			

Din Out

Note:

Unit: mm[inch]

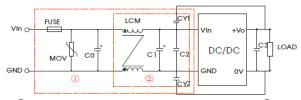
Wire range: 24-12 AWG Tightening torque: Max 0.4 N·m General tolerances: ±0.50 [±0.020]



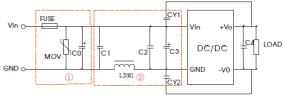
DESIGN REFERENCE

1. Typical Application

All the DC/DC converters of this series are tested below according to the recommended circuit below. If it is required to further reduce input and output ripple, properly increase the input & output of additional capacitors Cin and Cout or select capacitors of low equivalent impedance provided that the capacitance is no larger than the max. capacitive load of the product.


Dual output:

Single Output	Cout	Cin	Dual Output	Cout	Cin
Voltage (VDC)	(µF)	(µF)	Voltage (VDC)	(µF)	(µF)
3.3/5/9	220	100	±5/±12/±15	220	100
12/15/24	100	100	±24	100	100

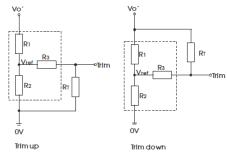

2. EMC Solution-Recommended Circuit

Single output:

Note: Part ① in the figure above is used for EMS test and part ② for EMI filtering; selected based on needs.

Dual output:

Notes: Part ① in the figure above is used for EMS test and part ② for EMI filtering; selected based on needs.


Parameter Description

Model	24Vin	48Vin		
FUSE	Choose according to	o actual input current		
MOV	S20K30	S14K60		
C0	680µF/50V	330µF/100V		
C1	330µF/50V	330µF/100V		
C2	4.7µF/50V	2.2µF/100V		
C3	Refer to Cout in Typical Application Figure			
LCM	1mH, contact factory for recommendation			
CY1, CY2	1nF/2KV			

Parameter Description

	. a.aete. 2 eeept.e					
Model	24Vin	48Vin				
FUSE	Choose according to actual input current					
MOV	S20K30	S14K60				
C0	680µF/50V	330µF/100V				
C1	2.2µF/50V	2.2µV/100V				
C2	2.2µF/50V	2.2µF/100V				
C3	330µF/50V	330µF/100V				
C4	Refer to Cout in Typical Application Figure					
LDMI	3.3µH					
CY1, CY2	2.2nF/400VAC Safety Y Capacitor					

3. Application of Trim and Calculation of Trim Resistance

Applied circuit of Trim (part in broken line is the interior of models)

Calculation formula of Trim resistance:

$$\begin{array}{cccc} \text{up: } R_T = & \frac{aR_2}{R_2 - a} & -R_3 & & a = & \frac{Vref}{Vo' \text{-} Vref} & \cdot R_1 \\ \\ \text{down: } R_T = & \frac{aR_1}{R_1 - a} & -R_3 & & a = & \frac{Vo' \text{-} Vref}{Vref} & \cdot R_2 \\ \end{array}$$

R_T is Trim resistance, a is a self-defined parameter, with no real meaning. Vo' for the actual needs of the up or down regulated votlage

to to the detact heede of the up of dethil regulated tellage									
Vout (VDC)	R1 (KΩ)	R2 (KΩ)	R3 (KΩ)	Vref(V)					
3.3	4.801	2.87	12.4	1.24					
5	2.883	2.87	10	2.5					
9	7.500	2.87	15	2.5					
12	11.000	2.87	15	2.5					
15	14.494	2.87	15	2.5					
24	24.872	2.87	17.8	2.5					

4. Models cannot be connected in parallel to increase power.

MODEL NUMBER SETUP :

RBA	30	-	12	S	12	С	Н
Series Name	Output Power		Input Voltage	Output Quantity	Output Voltage	Package	Heatsink
			24: 24VDC 48: 48VDC	S: Single	3.3: 3.3VDC 5: 5VDC 9: 9VDC 12: 12VDC 15: 15VDC 24: 24VDC	Blank: Through Hole C: Chassis Mount DN: DIN Rail Mount	Blank: No Heatsink H: Heatsink
				D: Dual	5: ±5VDC 12: ±12VDC 15: ±15VDC 24: ±24VDC		

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001-2008 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive
Exeter, NH 03833